Paper Reference(s)

6684/01 Edexcel GCE

Statistics S2

Advanced Level

Friday 18 January 2013 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S2), the paper reference (6684), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has 7 questions. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

P41482A This publication may only be reproduced in accordance with Edexcel Limited copyright policy ©2013 Edexcel Limited

1. (a) Write down the conditions under which the Poisson distribution can be used as an approximation to the binomial distribution.

(2)

(3)

The probability of any one letter being delivered to the wrong house is 0.01. On a randomly selected day Peter delivers 1000 letters.

(b) Using a Poisson approximation, find the probability that Peter delivers at least 4 letters to the wrong house.

Give your answer to 4 decimal places.

2. In a village, power cuts occur randomly at a rate of 3 per year. (a) Find the probability that in any given year there will be (i) exactly 7 power cuts, (ii) at least 4 power cuts. (5) (b) Use a suitable approximation to find the probability that in the next 10 years the number of power cuts will be less than 20. (6) A random variable *X* has the distribution B(12, p). 3. (a) Given that p = 0.25, find (i) P(X < 5), (ii) $P(X \ge 7)$. (3) (b) Given that P(X=0) = 0.05, find the value of p to 3 decimal places. (3) (c) Given that the variance of X is 1.92, find the possible values of p. (4)

- 4. The continuous random variable X is uniformly distributed over the interval [-4, 6].
 - (a) Write down the mean of X.
 - (1) (b) Find $P(X \le 2.4)$.

(c) Find
$$P(-3 < X - 5 < 3)$$
.

The continuous random variable Y is uniformly distributed over the interval [a, 4a].

(d) Use integration to show that $E(Y^2) = 7a^2$.

(e) Find
$$Var(Y)$$
.

(f) Given that
$$P(X < \frac{8}{3}) = P(Y < \frac{8}{3})$$
, find the value of *a*.

(3)

(2)

(2)

(4)

(2)

5. The continuous random variable T is used to model the number of days, t, a mosquito survives after hatching.

The probability that the mosquito survives for more than *t* days is

$$\frac{225}{\left(t+15\right)^2}, \quad t \ge 0.$$

(*a*) Show that the cumulative distribution function of *T* is given by

F(t) =
$$\begin{cases} 1 - \frac{225}{(t+15)^2}, & t \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

(1)

(2)

- (b) Find the probability that a randomly selected mosquito will die within 3 days of hatching.
- (c) Given that a mosquito survives for 3 days, find the probability that it will survive for at least 5 more days.

(3)

A large number of mosquitoes hatch on the same day.

(d) Find the number of days after which only 10% of these mosquitoes are expected to survive.

(4)

- 6. (a) Explain what you understand by a hypothesis.
 - (b) Explain what you understand by a critical region.

Mrs George claims that 45% of voters would vote for her.

In an opinion poll of 20 randomly selected voters it was found that 5 would vote for her.

(c) Test at the 5% level of significance whether or not the opinion poll provides evidence to support Mrs George's claim.

In a second opinion poll of n randomly selected people it was found that no one would vote for Mrs George.

(*d*) Using a 1% level of significance, find the smallest value of *n* for which the hypothesis $H_0: p = 0.45$ will be rejected in favour of $H_1: p < 0.45$.

(3)

(4)

(1)

(2)

7. The continuous random variable *X* has the following probability density function

$$f(x) = \begin{cases} a + bx, & 0 \le x \le 5, \\ 0, & \text{otherwise.} \end{cases}$$

where *a* and *b* are constants.

(*a*) Show that 10a + 25b = 2.

Given that $E(X) = \frac{35}{12}$,

- (b) find a second equation in a and b,
- (c) hence find the value of a and the value of b. (3)
- (d) Find, to 3 significant figures, the median of X. (3)
- (e) Comment on the skewness. Give a reason for your answer.

(2)

TOTAL FOR PAPER: 75 MARKS

END

(3)

(4)

January 2013 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1(a)	n large	B1
	<i>p</i> small	B1
		(2)
(b)	Let <i>X</i> be the random variable the number of letters delivered to the wrong house	
	<i>X</i> ~B(1000,0.01)	
	Po(10)	B1
	$P(X \ge 4) = 1 - P(X \le 3)$	M1
	= 1 - 0.0103	
	= 0.9897	A1
		(3)
		Total 5
(a)	Notes B1 Accept <i>n</i> (the number of trials) large / high / big / $n > 50$ (accept any number larger than 50) B1 Accept <i>p</i> (the probability) small / close to 0 / $p < 0.2$ (accept any number less than 0.2). Do not accept low	
(b)	These must appear in part (a). B1 writing or using Po(10) M1 using a Poisson (λ need not equal 10) and for writing or using 1 – P($X \le 3$). (Do not accept writing 1 – P($X \le 4$) unless they have used 1 – P($X \le 3$)). A1 0.9897 cao must be 4 dp	
	NB	
	An awrt 0.990 on its own gains B0M0A0 unless there is evidence that $Po(10)$ is used. In which case it gets B1M1A0	
	Using B(1000,0.01) gives 0.989927 and gains B0M0A0	

Question Number	Scheme	Marks
2 (a)	Let <i>X</i> be the random variable the number power cuts.	
	$X \sim \text{Po}(3)$	B1
(i)	$P(X = 7) = P(X \le 7) - P(X \le 6) \text{or } \frac{e^{-3}3^7}{7!}$ = 0.9881 - 0.9665	M1
	= 0.0216 awrt 0.0216	A1
(ii)	$P(X \ge 4) = 1 - P(X \le 3)$	M1
	= 1 - 0.6472	
	= 0.3528 awrt 0.353	A1
		(5)
(b)	$X \sim \text{Po}(30)$	
	N(30,30)	M1A1
	$P(X < 20) = P\left(Z < \frac{19.5 - 30}{\sqrt{30}}\right)$	M1M1 A1
	= 1 - 0.9726	
	= 0.0274 - 0.0276	A1
		(6)
	Notes	Total 11
(a)	B1 Writing or using Po(3) in either (i) or (ii)	
(i)	M1 writing or using $P(X \le 7) - P(X \le 6)$ or $\frac{e^{-\lambda}\lambda^7}{7!}$	
(ii) (b)	M1 writing or using $1 - P(X \le 3)$. (Do not accept writing $1 - P(X \le 4)$ unless they have used $1 - P(X \le 3)$). 1 st M1 for writing or using a normal approximation 1 st A1 for correct mean and sd (may be given if correct in standardisation formula) 2 nd M1 Standardising using their mean and their sd and using [18.5, 19, 19.5, 20 or 20.5] and for finding correct area by doing $1 - P(Z \le \text{"their 1.92"})$ If they have not written down a mean and sd then these need to be correct here to award the mark 3 rd M1 for attempting a continuity correction (19 ± 0.5) i.e. 18.5 or 19.5 only . 2 nd A1 for $\pm \frac{19.5 - 30}{\sqrt{30}}$ or $\pm \text{awrt 1.9}$ or better. 3 rd A1 awrt 0.0274, 0.0275 or 0.0276 SC using P(X< 20.5/19.5) – P(X< 19.5/18.5) can get M1A1 M0M1A0A0	

Question Number		Scheme			Mark	ζS
3(a) (i)	P(X < 5) = 0.8424		aw	vrt 0.842	B1	
(ii)	$P(X \ge 7) = 1 - P(X \le 6)$				M1	
	= 1 - 0.9857					
	= 0.0143		awi	rt 0.0143	A1	
						(3)
(b)	$P(X=0) = (1-p)^{12}$					
	$(1-p)^{12} = 0.05$				M1	
	$(1-p) = \sqrt[12]{0.05}$				M1	
	p = 0.221		aw	rt 0.221	A1	
						(3)
(c)	Variance $=12p(1-p)$					
	12p(1-p) = 1.92				M1	
	$12p - 12p^2 = 1.92$					
	$12p^2 - 12p + 1.92 = 0$	or	$p^2 - p + 0.16 = 0$ $25p^2 - 25p + 4 = 0$			
	$p = \frac{12 \pm \sqrt{12^2 - 4 \times 12 \times 1.92}}{24}$		(5p-1)(5p-4) = 0		M1	
	p = 0.2 or 0.8				A1,A1	
						(4)
	Notes				Tota	al 10
(a) (ii)	M1writing or using $1 - P(X \le 0)$ been used	6) Do not acce	pt 1 – P($X < 7$) unless 1 – P(X	$1 \leq 6$) has		
(b)	$1^{\text{st}} \text{M1} (1-p)^n = 0.05$ 2^{nd}M1 taking <i>n</i> th root. If they l	nave used logs	they need to get to a correct e	expression		
(c)	$1^{\text{st}} M1 \ 12p(1-p) = 1.92 \text{ o.e.}$ $2^{\text{nd}} M1 \ aplying a guadantia site$	or by footoniain	og / completing the groups /	r formula		
	Working must either be correct	for their quad	ratic (they may use a quadrati	ic from an		
	incorrect rearrangement) or the correctly and only made 1 error	y must have w substituting in	ritten the appropriate formula nto it. May be implied by a co	down orrect value		
	of <i>p</i> . 1 st A1 for 0.2	-				
	2 nd A1 for 0.8					

Question Number	Scheme	Mark	s
4 (a)	Mean = 1	B1	(1)
(b)	$P(X \le 2.4) = (2.44) \times \frac{1}{10}$ = 0.64 or $\frac{16}{25}$	M1 A1	
(c)	P(-3 < X - 5 < 3) = P(2 < X < 6) = 0.4	M1 A1	(2)
(d)	$\int_{a}^{4a} \frac{y^2}{4a-a} dy = \left[\frac{y^3}{9a}\right]_{a}^{4a}$ $64a^3 - a^3$	M1 M1 dep A1	(2)
(e)	$= \frac{64a - a}{9a}$ $= 7a^2 *AG$	Alcso	(4)
(C)	$\operatorname{Var}(Y) = \frac{1}{12}(4a - a)^2$ or $\operatorname{Var}(Y) = 7a^2 \cdot \left(\frac{5}{2}a\right)$ = $\frac{3}{a^2}a^2$	M1 A1cso	
	$-\frac{1}{4}a$		(2)
(f)	$\frac{2}{3} = \frac{1}{3a} \left(\frac{8}{3} - a\right)$	M1 A1	
	$a = \frac{6}{9}$	A1	(3)
		Tota	l 14
(b) (c)	Notes M1 $(2.44) \times \frac{1}{10}$ or $1 - (6 - 2.4) \times \frac{1}{10}$ o.e M1 finding P(2 < X < 6) or P(X > 2) or 1 - P(X < 2). May be implied by a correct answer if there is no incorrect working. Do not ignore subsequent incorrect working. NB if they change the distribution to U[-9,1] then M1 is for finding P(-3 < X < 1) or P(X > -3) or 1 - P(X < -3). May be implied by a correct answer if there is no incorrect working. Do not ignore subsequent incorrect working.		
(d)	NB remember the answer is given (AG) so they must show their working		
	1 st M1 writing or using $\int_{a}^{4a} y^{2} f(y) dy$ with correct limits used at some point. Condone omission of $dy = f(y) does not need to be correct.$		
	2^{nd} M1 dependent on previous M being awarded. Attempting to integrate at $v^n \rightarrow \frac{y^{n+1}}{2^{nd}}$		
	1^{st} A1 correct expression - the correct limits must be substituted. 2^{nd} A1 cso		

(c)
M1 either use of
$$\frac{(b-a)^2}{12}$$
 or $F(Y^2) - [F(Y)]^2$: they may use their part (d) for $F(Y^2)$
(f)
M1 using $\frac{1}{3a}(\frac{8}{3}-a) = a$ probability or $\frac{1}{3a}(4a-\frac{8}{3}) = a$ probability
An answer of $\frac{8}{9}$ with no incorrect working gains M1A1A1

Question Number	Scheme	Marks
5(a)	$P(T > t) = \frac{225}{(t+15)^2}$ $P(T \le t) = 1 - P(T > t)$ $= 1 - \frac{225}{(t+15)^2}$	
	$F(t) = \begin{cases} 1 - \frac{225}{(t+15)^2} & t \ge 0\\ 0 & \text{otherwise.} \end{cases}$	B1 (1)
(b)	$P(T < 3) = 1 - \frac{225}{(3+15)^2}$ $= \frac{11}{25} \text{ or } 0.30555$	M1 A1
(c)	awrt 0.306 $P(T > 8 T > 3) = \frac{P(T > 8)}{P(T > 3)}$ 225	(2) M1 M1
	$=\frac{\frac{223}{23^2}}{\frac{225}{18^2}}$ 324	A1
	$= \frac{52.1}{529} \text{or } 0.612 \qquad \text{awrt } 0.612 / \\ 0.6125$	(2)
(d)	$\frac{1 - F(t) = 0.1}{\frac{225}{(t+15)^2}} = 0.1$ or $1 - \frac{225}{(t+15)^2} = 0.9$	(3) M1 A1
	$\frac{225}{0.1} = (t+15)^2$ $t = \sqrt{\frac{225}{0.1}} - 15$ t = 32.4, also accept 32/33	M1 A1 (4) Total 10

(a)	Notes B1 The line $P(T \le t) = 1 - P(T > t)$ or $F(t) = 1 - P(T > t)$ or both of the following statem	ents
	$P(T > t) = \frac{225}{(t+15)^2}$ and $P(T \le t) / F(t) = 1 - \frac{225}{(t+15)^2}$ must be seen and no errors. Allow	v equivalent
	in words. Condone use of \leq instead of \leq or $>$ instead of $>$ and vice versa	
(b)	The cdf must be given. Allow $t > 0$ M1 substituting 2 into $E(t)$	
(b) (c)	1^{st} M1 The conditional probability must,	
	 be a quotient and have P(T > 3) or 'their numerical equivalent' for the denominator and 	
	• have $P(T > 8)$ or $P(T > 5)$ or $P(T > 8 \cap T > 3)$ or $P(T > 5 \cap T > 3)$ or 'their numerical equivalent' for the numerator.	
	Allow \geq in place of $>$	
	2^{nd} M1 writing or using P(T > 8) or P(T ≥ 8). NB This is independent of the first M mark.	
(d)	1 st M1 writing or using $1 - F(t) = 0.1$ or $P(T \ge t) = 0.1$ May be implied by $\frac{225}{(t+15)^2}$	= 0.1 o.e.
	2^{nd} M1 either square rooting or solving a quadratic either by factorising / completing the square / using the formula - must be correct for their quadratic. A1 awrt 32.4 or 32 or 33. Do not accept $15\sqrt{10} - 15$	
	All dwit 52.4 61 52 61 55. Do not decept 15 (10 15	

Question Number	Scheme	Mark	S
6(a)	A statement concerning a population parameter	B1	
(b)	A critical region is the <u>range</u> / <u>set of values / answers</u> or a <u>test statistic</u> or <u>region/area</u> or values (where the test is significant)	B1	
	that would lead to the rejection of H0 / acceptance of H_1	B1	
			(3)
(c)	$H_0: p = 0.45$ $H_1: p < 0.45$ (or $p \neq 0.45$)		(-)
	$X \sim B(20, 0.45)$	M1	
	$P(X \le 5) = 0.0553$ CR $X \le 4$	A1	
	Accept H ₀ . Not significant. 5 does not lie in the Critical region.	M1d	
	There is no evidence that the proportion who voted for <u>Mrs George</u> is not 45% or	Alcso	
	there is evidence to support <u>Mirs George s</u> claim		(4)
(d)	B(8, 0.45): P(0) = 0.0084	M1	
	B(7, 0.45): $P(0) = 0.0152$	A1	
	Hence smallest value of <i>n</i> is 8	B1	
	Alternative		(3)
	$(0.55)^n < 0.01$	M1	
	$n\log 0.55 < \log 0.01$		
	<i>n</i> > 7.7	A1	
	Hence smallest value of <i>n</i> is 8	B1cso	
(a) (c)	Notes It must be a statement including the words population parameter . 1^{st} M1 using B(20, 0.45) and finding P($X \le 5$) or P($X \ge 6$) Using the normal approximation to the binomial is M0 A1 0.0553 (allow 0.9447) if not using CR or CR $X \le 4$ or $X < 5$ 2^{nd} M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non contextual statements nor award if 2 probabilities are given which would result in different conclusions) A1 cso Conclusion must contain the words Mrs George . There must be no incorrect working seen. If there are no hypotheses you cannot award this mark. NB A correct contextual statement on it's own will score M1 A1.	Tota	d 10
(d)	M1 Attempt to find P(0) from B(n , 0.45) or $(0.55)^n < 0.01$ or $(0.55)^n = 0.01$ or $(0.55)^n > 0.01$ A1 P(0) = 0.0084 and P(0) = 0.0152 or getting 7.7 May be implied by correct answer. B1 cso. $n = 8$ should not come from incorrect working. NB An answer of 8 on its own with no working gains M1A1B1		

Question Number	Scheme	Marks	
7(a)	$\int_{a}^{5} a + bx \mathrm{d}x = 1$	M1	
	$\left[ax + \frac{bx^2}{2}\right]_0^5 = 1$	A1	
	$5a + \frac{25b}{2} = 1$	Mldep	
	10a + 25b = 2	Alcso (4))
(b)	$\int_{0}^{5} ax + bx^{2} \mathrm{d}x = \frac{35}{12}$	M1	
	$\left[\frac{ax^2}{2} + \frac{bx^3}{3}\right]_0^5 = \frac{35}{12}$	A1	
	$\frac{25a}{2} + \frac{125b}{3} = \frac{35}{12}$ $30a + 100b = 7$	A1 (3))
(c)	30a + 100b = 7	M1	
	10a + 25b = 2 $a = 0.1 \ b = 0.04$	A1,A1	
(d)	$\int_{0}^{m} 0.1 + 0.04x \mathrm{d}x = 0.5$	(3) M1)
	$\left[0.1x + \frac{0.04x^2}{2}\right]_0^m = 0.5$	A1ft	
	$0.1m + 0.02m^2 - 0.5 = 0$		
	$m = \frac{-0.1 \pm \sqrt{0.1^2 + 4 \times 0.02 \times 0.5}}{2 \times 0.02}$		
	m = 3.09, -8.09 therefore 3.09	A1	
(e)	mean < median (< mode)	(3) B1ft)
	negatively skewed	BI dep ft (2))
		Toal 15	5
(a)	Notes 1^{st} M1 Attempting to integrate with correct limits or for an attempt to find area $0.5(a + a)$	b)h or	
	Attempting to integrate and using $F(5) = 1$ 1 st A1 Correct integration or correct area 2 nd M1 for using =1. This is dependent on the first M1 being awarded.		
(b)	2^{nd} A1 cso condone missing dx		
ζ-γ	MI using or writing (limits not needed) $\int_0^{\infty} ax + bx^2 dx = \frac{b^2}{12}$		
	1 A1 correct integration $2^{nd} A1$ may be awarded for an unsimplified version $25a + 125b = 35$		
	2 At may be awarded for an unsimplified version $\frac{1}{2} + \frac{1}{3} = \frac{1}{12}$		

(c)	M1 attempting to solve "their equations" simultaneously – either using rearranging and substitution or making one of the coefficients the 'same' (ignore sign) and either adding or subtracting. May
	be implied by correct values for a and b
	1 st A1 for 0.1
	2 nd A1 for 0.04
(d)	M1 writing or using $\int_0^m "their a"+"their b"x dx = 0.5$: limits not needed
	1 st A1 correct integration for their " <i>a</i> " and " <i>b</i> "
	NB the correct equation simplifies to $m^2 + m - 25 = 0$
	A1 3.09 only. If they have both roots then they must select 3.09
(e)	1 st B1ft. They must compare their values for mean and median correctly. They only need to
	compare 2 of mean, median and mode. If they compare either the median or mean with the
	mode only then the value of the mode must be stated. They may draw a sketch that matches
	their values of 'a' and 'b' for $0 \le x \le 5$. It must not go below the x-axis This may be seen in part
	(a)
	2 nd B1 dependent ft on the previous B being awarded